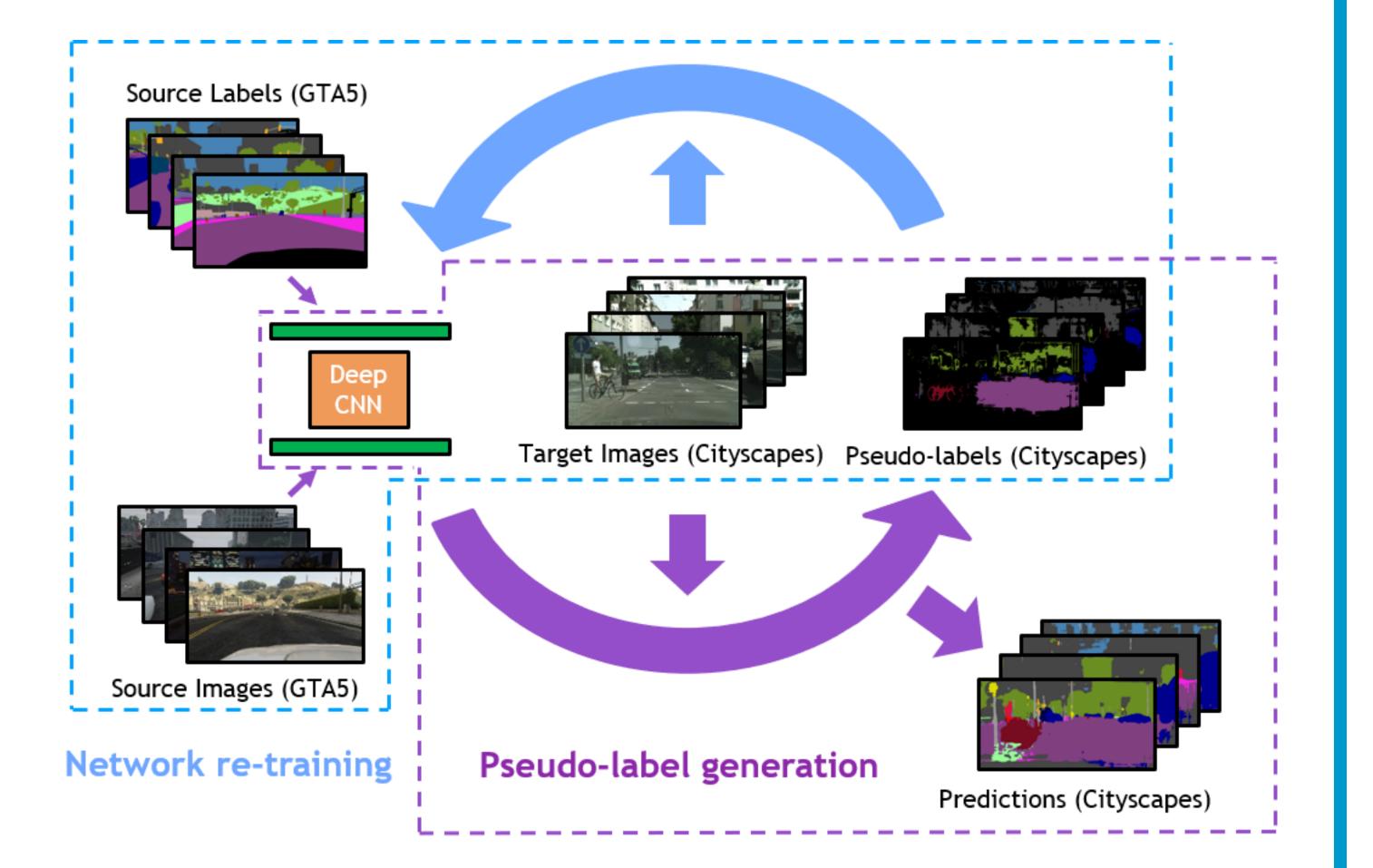
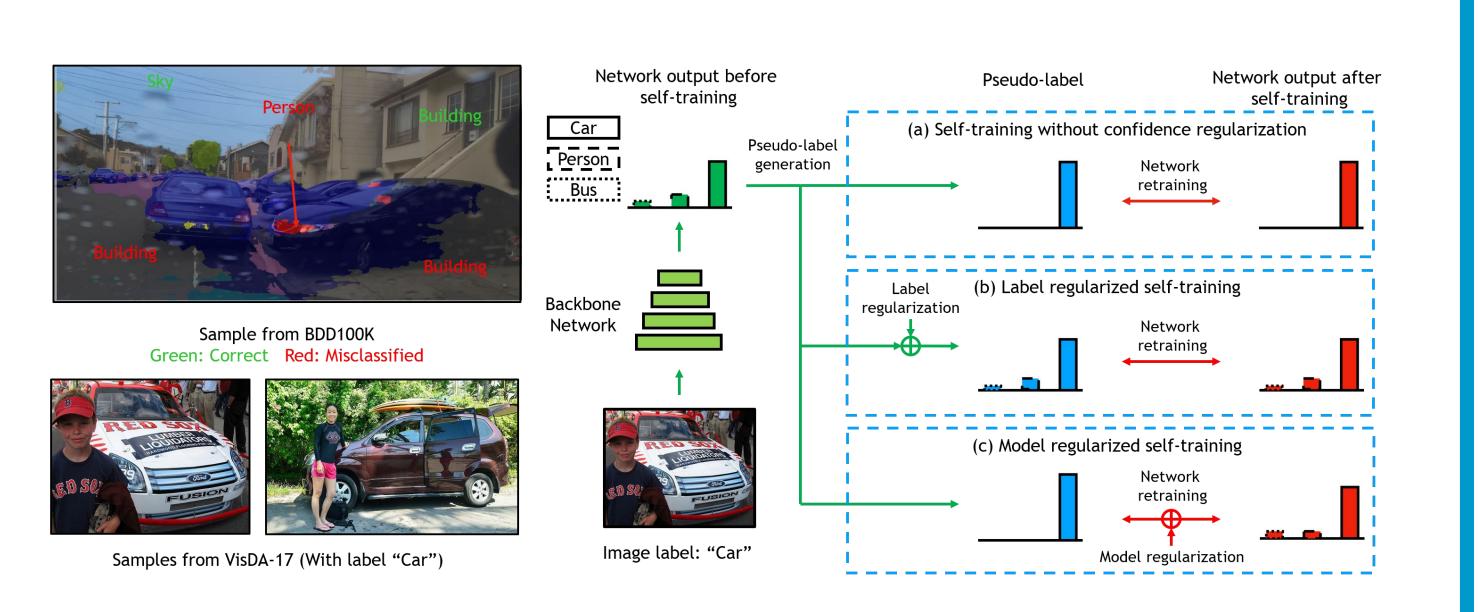


Confidence Regularized Self-Training


Yang Zou¹, Zhiding Yu², Xiaofeng Liu¹, B. V. K. Vijaya Kumar¹, Jinsong Wang³ ¹ Carnegie Mellon University ² NVIDIA ³ General Motors


Unsupervised Domain Adaptation

Proposed Iterative Framework

Preventing Overconfidence

Preliminaries and Definitions

Fine-tuning for Supervised Adaptation

$$\min_{\mathbf{w}} \mathcal{L}_S(\mathbf{w}) = -\sum_{s \in S} \sum_{k=1}^{T} y_s^{(k)} \log p(k|\mathbf{x}_s; \mathbf{w}) - \sum_{t \in T} \sum_{k=1}^{T} y_t^{(k)} \log p(k|\mathbf{x}_t; \mathbf{w})$$

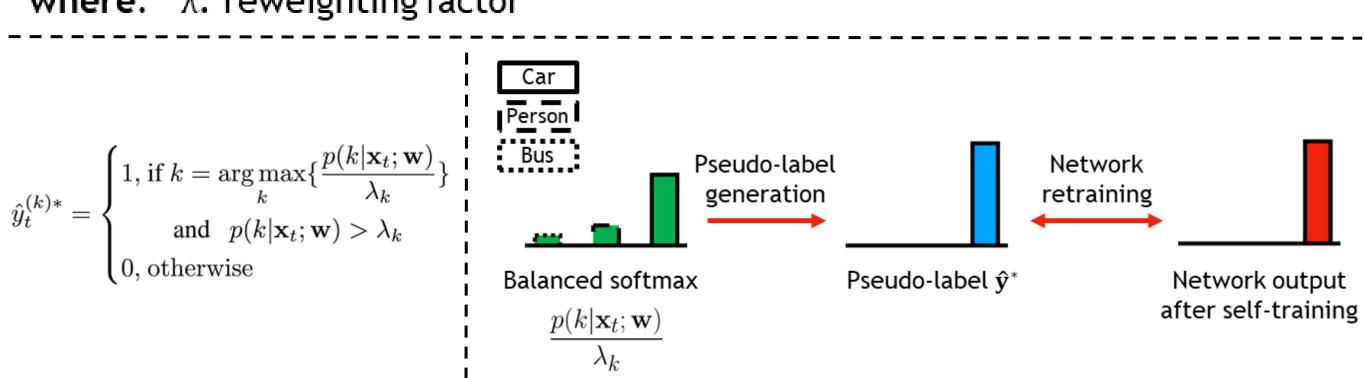
where: x: input sample p: class predication vector y: label vector w: network parameters s: source sample index t: target sample index

Self-Training for Unsupervised Adaptation

$$\min_{\mathbf{w}, \hat{\mathbf{Y}}_T} \mathcal{L}_U(\mathbf{w}, \hat{\mathbf{Y}}) = -\sum_{s \in S} \sum_{k=1}^{K} y_s^{(k)} \log p(k|\mathbf{x}_s; \mathbf{w}) - \sum_{t \in T} \sum_{k=1}^{K} \hat{y}_t^{(k)} \log p(k|\mathbf{x}_t; \mathbf{w})$$

$$s.t. \ \hat{\mathbf{y}}_t \in \Delta^{K-1}, \ \forall t$$

where: \hat{y} : pseudo-label vector \triangle^{K-1} : probability simplex


Class-Balanced Self-Training (CBST)

$$\min_{\mathbf{w}, \hat{\mathbf{Y}}_T} \mathcal{L}_{CB}(\mathbf{w}, \hat{\mathbf{Y}}_T) = -\sum_{s \in S} \sum_{k=1}^K y_s^{(k)} \log p(k|\mathbf{x}_s; \mathbf{w}) - \sum_{t \in T} \sum_{k=1}^K \hat{y}_t^{(k)} \log \frac{p(k|\mathbf{x}_t; \mathbf{w})}{\lambda_k}$$

$$s.t. \ \hat{\mathbf{y}}_t = (\hat{y}_t^{(1)}, ..., \hat{y}_t^{(K)}) \in \Delta^{K-1} \cup \{\mathbf{0}\}, \ \forall t$$

$$\lambda_k > 0$$

where: λ: reweighting factor

Confidence Regularized Self-Training

Label Regularized Self-Training (LR)

$$\min_{\mathbf{w}, \hat{\mathbf{Y}}_T} \mathcal{L}_{LR}(\mathbf{w}, \hat{\mathbf{Y}}_T) = -\sum_{s \in S} \sum_{k=1}^K y_s^{(k)} \log p(k|\mathbf{x}_s; \mathbf{w}) - \sum_{t \in T} \left[\sum_{k=1}^K \hat{y}_t^{(k)} \log \frac{p(k|\mathbf{x}_t; \mathbf{w})}{\lambda_k} - \alpha r_c(\hat{\mathbf{y}}_t) \right]$$

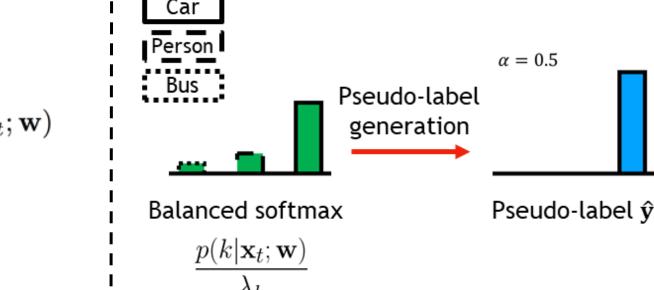
$$s.t. \ \hat{\mathbf{y}}_t = (\hat{y}_t^{(1)}, ..., \hat{y}_t^{(K)}) \in \Delta^{K-1} \cup \{\mathbf{0}\}, \ \forall t$$

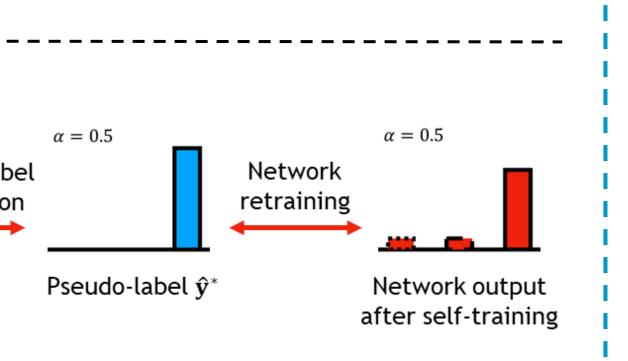
$$\lambda_k > 0$$

$$\text{where:} \ \alpha \colon \text{regularizer weight}$$

$$\mathcal{C}(\hat{\mathbf{y}}_t) = -\hat{y}_t^{(k)} \sum_{k=1}^K \log \frac{p(k|\mathbf{x}_t; \mathbf{w})}{\lambda_k} + \alpha r_c(\hat{\mathbf{y}}_t)$$

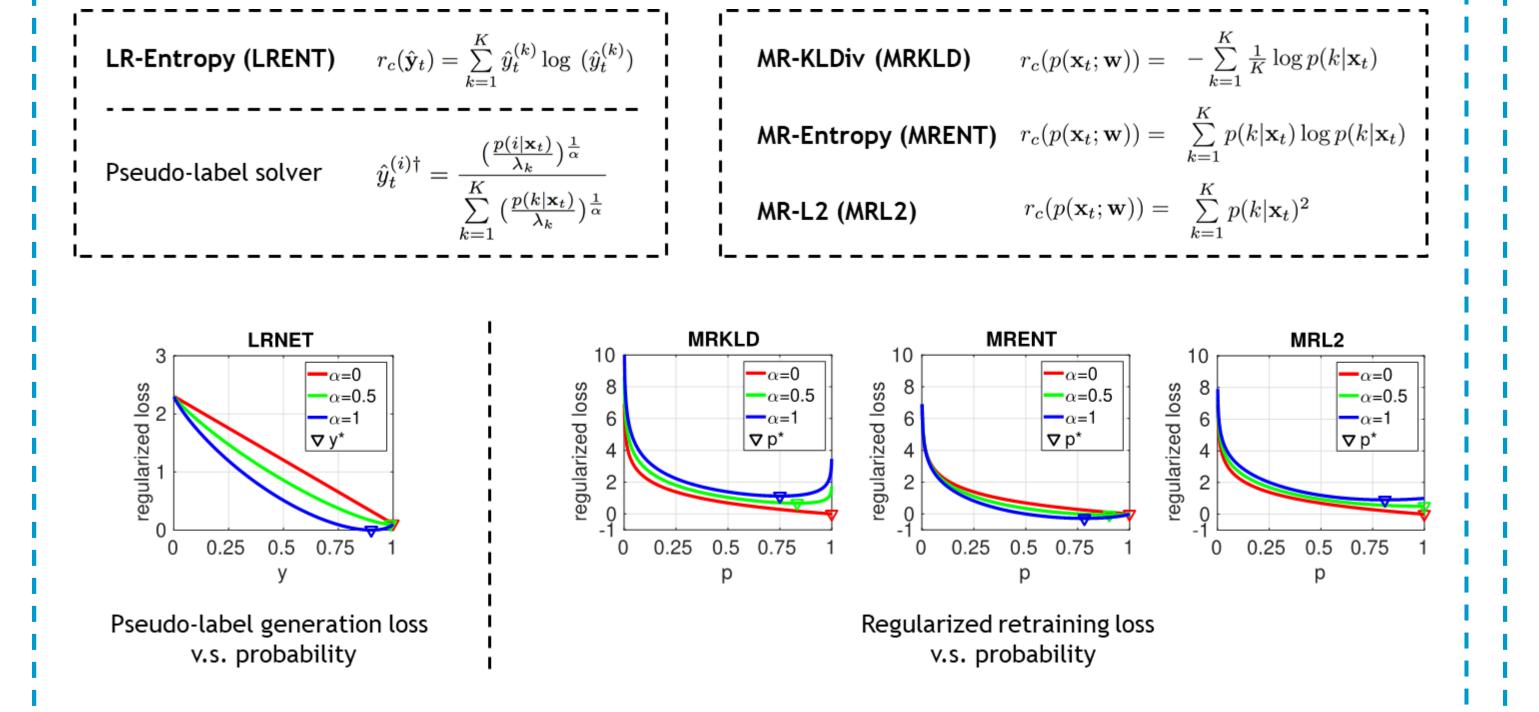
$$\hat{\mathbf{y}}_t^{\dagger} = \underset{\hat{\mathbf{y}}_t}{\operatorname{arg min}} \mathcal{C}(\hat{\mathbf{y}}_t)$$


$$s.t. \ \hat{y}_t \in \Delta^{(K-1)}, \ \forall t$$


$$\hat{\mathbf{y}}_t^* = \begin{cases} \hat{\mathbf{y}}_t^{\dagger}, \ \text{if } \mathcal{C}(\hat{\mathbf{y}}_t^{\dagger}) < \mathcal{C}(\mathbf{0}) \\ \mathbf{0} \quad \text{otherwise} \end{cases}$$

$$\text{Balanced softmax}$$

$$\frac{p(k|\mathbf{x}_t; \mathbf{w})}{p(k|\mathbf{x}_t; \mathbf{w})}$$


Model Regularized Self-Training (MR) where: α : regularizer weight

Regularizer Design and Theory

Confidence Regularizers

Theoretical Analysis

- **Proposition 1.** CRST can be modeled as a regularized maximum likelihood for classification (RCML) problem optimized via classification expectation maximization
- **Proposition 2.** Given pre-determined λ_k 's, CRST is convergent with gradient descent for network retraining optimization.
- **Proposition 3.** If λ_k 's are equal for all k, the soft pseudo-label of LRENT is exactly the same as softmax with temperature.
- **Proposition 4.** Self-Training with MRKLD is equivalent to self-training with pseudo-label uniformly smoothed by $\varepsilon = (K\alpha - \alpha)/(K + K\alpha)$, where α is the regularizer weight.

Experiment: GTA5 —> Cityscapes

Method	Backbone	Road	SW	Build	Wall	Fence	Pole	TL	TS	Veg.	Terrain	Sky	PR	Rider	Car	Truck	Bus	Train	Motor	Bike	mIoU
Source	DRN-26	42.7	26.3	51.7	5.5	6.8	13.8	23.6	6.9	75.5	11.5	36.8	49.3	0.9	46.7	3.4	5.0	0.0	5.0	1.4	21.7
CyCADA [23]	DIG1-20	79.1	33.1	77.9	23.4	17.3	32.1	33.3	31.8	81.5	26.7	69.0	62.8	14.7	74.5	20.9	25.6	6.9	18.8	20.4	39.5
Source	DRN-105	36.4	14.2	67.4	16.4	12.0	20.1	8.7	0.7	69.8	13.3	56.9	37.0	0.4	53.6	10.6	3.2	0.2	0.9	0.0	22.2
MCD [51]		90.3	31.0	78.5	19.7	17.3	28.6	30.9	16.1	83.7	30.0	69.1	58.5	19.6	81.5	23.8	30.0	5.7	25.7	14.3	39.7
Source	DeepLabv2	75.8	16.8	77.2	12.5	21.0	25.5	30.1	20.1	81.3	24.6	70.3	53.8	26.4	49.9	17.2	25.9	6.5	25.3	36.0	36.6
AdaptSegNet [60]		86.5	36.0	79.9	23.4	23.3	23.9	35.2	14.8	83.4	33.3	75.6	58.5	27.6	73.7	32.5	35.4	3.9	30.1	28.1	42.4
AdvEnt [63]	DeepLabv2	89.4	33.1	81.0	26.6	26.8	27.2	33.5	24.7	83.9	36.7	78.8	58.7	30.5	84.8	38.5	44.5	1.7	31.6	32.4	45.5
Source FCAN [67]	DeepLabv2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	29.2 46.6
Source		71.3	19.2	69.1	18.4	10.0	35.7	27.3	6.8	79.6	24.8	72.1	57.6	19.5	55.5	15.5	15.1	11.7	21.1	12.0	33.8
CBST		91.8	53.5	80.5	32.7	21.0	34.0	28.9	20.4	83.9	34.2	80.9	53.1	24.0	82.7	30.3	35.9	16.0	25.9	42.8	45.9
MRL2		91.9	55.2	80.9	32.1	21.5	36.7	30.0	19.0	84.8	34.9	80.1	56.1	23.8	83.9	28.0	29.4	20.5	24.0	40.3	46.0
MRENT	DeepLabv2	91.8	53.4	80.6	32.6	20.8	34.3	29.7	21.0	84.0	34.1	80.6	53.9	24.6	82.8	30.8	34.9	16.6	26.4	42.6	46.1
MRKLD		91.0	55.4	80.0	33.7	21.4	37.3	32.9	24.5	85.0	34.1	80.8	57.7	24.6	84.1	27.8	30.1	26.9	26.0	42.3	47.1
LRENT		91.8	53.5	80.5	32.7	21.0	34.0	29.0	20.3	83.9	34.2	80.9	53.1	23.9	82.7	30.2	35.6	16.3	25.9	42.8	45.9
Source		70.0	23.7	67.8	15.4	18.1	40.2	41.9	25.3	78.8	11.7	31.4	62.9	29.8	60.1	21.5	26.8	7.7	28.1	12.0	35.4
CBST [69]		86.8	46.7	76.9	26.3	24.8	42.0	46.0	38.6	80.7	15.7	48.0	57.3	27.9	78.2	24.5	49.6	17.7	25.5	45.1	45.2
MRL2	ResNet-38	84.4	52.7	74.7	38.0	32.2	43.7	53.7	38.6	73.9	24.4	64.4	45.6	24.6	63.2	3.22	31.9	45.9	44.2	34.8	46.0
MRENT		84.6	49.5	73.9	35.8	25.1	46.2	53.3	43.3	75.2	24.2	63.8	48.2	33.8	65.7	2.89	32.6	39.2	50.0	34.7	46.4
MRKLD		84.5	47.7	74.1	27.9	22.1	43.8	46.5	37.8	83.7	22.7	56.1	56.8	26.8	81.7	22.5	46.2	27.5	32.3	47.9	46.8
LRENT		80.3	40.8	65.8	24.6	30.5	43.1	49.5	40.3	82.1	26.0	54.6	59.4	32.1	68.0	31.9	30.0	21.9	44.8	46.7	45.9
CBST-SP		85.6	55.1	76.9	26.8	23.4	38.9	47.1	46.9	83.4	25.5	68.7	45.6	15.7	79.7	27.7	50.3	38.2	33.4	44.6	48.1
MRKLD-SP	ResNet-38	90.8	46.0	79.9	27.4	23.3	42.3	46.2	40.9	83.5	19.2	59.1	63.5	30.8	83.5	36.8	52.0	28.0	36.8	46.4	49.2
MRKLD-SP-MST		91.7	45.1	80.9	29.0	23.4	43.8	47.1	40.9	84.0	20.0	60.6	64.0	31.9	85.8	39.5	48.7	25.0	38.0	47.0	49.8
						47															
																					H

CRST (MRKLD)

Experiment: SYNTHIA —> Cityscapes

Method	Backbone	Road	SW	Build	Wall*	Fence*	Pole*	TL	TS	Veg.	Sky	PR	Rider	Car	Bus	Motor	Bike	mIoU	mIoU'
Source	DRN-105	14.9	11.4	58.7	1.9	0.0	24.1	1.2	6.0	68.8	76.0	54.3	7.1	34.2	15.0	0.8	0.0	23.4	26.8
MCD [51]		84.8	43.6	79.0	3.9	0.2	29.1	7.2	5.5	83.8	83.1	51.0	11.7	79.9	27.2	6.2	0.0	37.3	43.5
Source	DeepLabv2	55.6	23.8	74.6	_	_	_	6.1	12.1	74.8	79.0	55.3	19.1	39.6	23.3	13.7	25.0	_	38.6
AdaptSegNet [60]		84.3	42.7	77.5	_	_	_	4.7	7.0	77.9	82.5	54.3	21.0	72.3	32.2	18.9	32.3	_	46.7
AdvEnt [63]	DeepLabv2	85.6	42.2	79.7	8.7	0.4	25.9	5.4	8.1	80.4	84.1	57.9	23.8	73.3	36.4	14.2	33.0	41.2	48.0
Source	ResNet-38	32.6	21.5	46.5	4.8	0.1	26.5	14.8	13.1	70.8	60.3	56.6	3.5	74.1	20.4	8.9	13.1	29.2	33.6
CBST [69]		53.6	23.7	75.0	12.5	0.3	36.4	23.5	26.3	84.8	74.7	67.2	17.5	84.5	28.4	15.2	55.8	42.5	48.4
Source	DeepLabv2	64.3	21.3	73.1	2.4	1.1	31.4	7.0	27.7	63.1	67.6	42.2	19.9	73.1	15.3	10.5	38.9	34.9	40.3
CBST		68.0	29.9	76.3	10.8	1.4	33.9	22.8	29.5	77.6	78.3	60.6	28.3	81.6	23.5	18.8	39.8	42.6	48.9
MRL2		63.4	27.1	76.4	14.2	1.4	35.2	23.6	29.4	78.5	77.8	61.4	29.5	82.2	22.8	18.9	42.3	42.8	48.7
MRENT		69.6	32.6	75.8	12.2	1.8	35.3	23.3	29.5	77.7	78.9	60.0	28.5	81.5	25.9	19.6	41.8	43.4	49.6
MRKLD		67.7	32.2	73.9	10.7	1.6	37.4	22.2	31.2	80.8	80.5	60.8	29.1	82.8	25.0	19.4	45.3	43.8	50.1
LRENT		65.6	30.3	74.6	13.8	1.5	35.8	23.1	29.1	77.0	77.5	60.1	28.5	82.2	22.6	20.1	41.9	42.7	48.7

Experiment: VisDA-17

111011101	11010	27.11.0	25 410	-C-til	220200		1120101	1 010011	2 200220	OHER COURT	2.141.1.1		1120111
Source [50]	55.1	53.3	61.9	59.1	80.6	17.9	79.7	31.2	81.0	26.5	73.5	8.5	52.4
MMD [33]	87.1	63.0	76.5	42.0	90.3	42.9	85.9	53.1	49.7	36.3	85.8	20.7	61.1
DANN [15]	81.9	77.7	82.8	44.3	81.2	29.5	65.1	28.6	51.9	54.6	82.8	7.8	57.4
ENT [18]	80.3	75.5	75.8	48.3	77.9	27.3	69.7	40.2	46.5	46.6	79.3	16.0	57.0
MCD [51]	87.0	60.9	83.7	64.0	88.9	79.6	84.7	76.9	88.6	40.3	83.0	25.8	71.9
ADR [50]	87.8	79.5	83.7	65.3	92.3	61.8	88.9	73.2	87.8	60.0	85.5	32.3	74.8
SimNet-Res152 [44]	94.3	82.3	73.5	47.2	87.9	49.2	75.1	79.7	85.3	68.5	81.1	50.3	72.9
GTA-Res152 [53]	-	-	-	-	-	-	-	-	-	-	-	-	77.1
Source-Res101	68.7	36.7	61.3	70.4	67.9	5.9	82.6	25.5	75.6	29.4	83.8	10.9	51.6
CBST	87.2±2.4	78.8 ± 1.0	56.5 ± 2.2	55.4 ± 3.6	85.1 ± 1.4	79.2 ± 10.3	83.8 ± 0.4	77.7 ± 4.0	82.8 ± 2.8	88.8 ± 3.2	69.0 ± 2.9	72.0 ± 3.8	76.4±0.9
MRL2	87.0±2.9	79.5 ± 1.9	57.1 ± 3.2	54.7 ± 2.9	85.5 ± 1.1	78.1 ± 11.7	83.0 ± 1.5	77.7 ± 3.7	82.4 ± 1.7	88.6 ± 2.7	69.1 ± 2.2	71.8 ± 3.0	76.2 ± 1.0
MRENT	87.1±2.7	78.3 ± 0.7	56.1 ± 4.0	54.4 ± 2.7	84.4 ± 2.3	79.9 ± 10.6	83.7 ± 1.1	77.9 ± 4.4	82.7 ± 2.4	87.4 ± 2.8	70.0 ± 1.4	72.8 ± 3.3	76.2 ± 0.8
MRKLD	87.3±2.5	79.4 ± 1.9	60.5 ± 2.4	59.7 ± 2.5	87.6 ± 1.4	82.4 ± 4.4	86.5 ± 1.1	78.4 ± 2.6	84.6 ± 1.7	86.4 ± 2.8	72.5 ± 2.4	69.8 ± 2.5	77.9±0.5
LRENT	87.7±2.4	78.7 ± 0.8	57.3 ± 3.3	54.5 ± 4.0	84.8 ± 1.7	79.7 ± 10.3	84.2 ± 1.4	77.4 ± 3.7	83.1 ± 1.5	88.3 ± 2.6	70.9 ± 2.1	72.6 ± 2.4	76.6±0.9
MRKLD+LRENT	88.0±0.6	79.2 ± 2.2	61.0 ± 3.1	60.0 ± 1.0	87.5 ± 1.2	81.4 ± 5.6	86.3 ± 1.5	$78.8 {\pm} 2.1$	85.6 ± 0.9	86.6 ± 2.5	73.9 ± 1.3	68.8 ± 2.3	78.1±0.2

Exp: Office-31

Method	$A \rightarrow W$	${ m D}{ ightarrow}{ m W}$	$W{ ightarrow} D$	$A{\rightarrow}D$	$D \rightarrow A$	$W \rightarrow A$	Mean
ResNet-50 [21]	68.4±0.2	96.7 ± 0.1	99.3 ± 0.1	68.9 ± 0.2	62.5±0.3	60.7±0.3	76.1
DAN [33]	80.5±0.4	97.1 ± 0.2	99.6 ± 0.1	78.6 ± 0.2	63.6 ± 0.3	62.8 ± 0.2	80.4
RTN [35]	84.5±0.2	96.8 ± 0.1	99.4 ± 0.1	77.5 ± 0.3	66.2 ± 0.2	64.8 ± 0.3	81.6
DANN [15]	82.0±0.4	96.9 ± 0.2	99.1 ± 0.1	79.7 ± 0.4	68.2 ± 0.4	67.4 ± 0.5	82.2
ADDA [61]	86.2±0.5	96.2 ± 0.3	98.4 ± 0.3	77.8 ± 0.3	69.5 ± 0.4	68.9 ± 0.5	82.9
JAN [36]	85.4±0.3	97.4 ± 0.2	99.8 ± 0.2	84.7 ± 0.3	68.6 ± 0.3	70.0 ± 0.4	84.3
GTA [53]	89.5±0.5	97.9 ± 0.3	99.8 ± 0.4	87.7 ± 0.5	72.8 ± 0.3	71.4 ± 0.4	86.5
CBST	87.8±0.8	98.5 ± 0.1	100±0.0	86.5±1.0	71.2±0.4	70.9 ± 0.7	85.8
MRL2	88.4±0.2	98.6 ± 0.1	$100 {\pm} 0.0$	87.7 ± 0.9	71.8 ± 0.2	72.1 ± 0.2	86.4
MRENT	88.0±0.4	98.6 ± 0.1	$100 {\pm} 0.0$	87.4 ± 0.8	72.7 ± 0.2	71.0 ± 0.4	86.4
MRKLD	88.4±0.9	98.7 ± 0.1	$100 {\pm} 0.0$	88.0 ± 0.9	71.7 ± 0.8	70.9 ± 0.4	86.3
LRENT	88.6±0.4	98.7 ± 0.1	$100 {\pm} 0.0$	89.0 ± 0.8	72.0 ± 0.6	71.0 ± 0.3	86.6
MRKLD+LRENT	89.4±0.7	98.9 ± 0.4	$100 {\pm} 0.0$	88.7 ± 0.8	72.6 ± 0.7	70.9 ± 0.5	86.8

Reference

- Tsai et al., Learning to adapt structured output space for semantic segmentation, CVPR 2018. (AdaptSegNet)
- Saito et al., Maximum classifier discrepancy for unsupervised domain adap-

- Adversarial discriminative domain adaptation, CVPR 2017 (ADDA)