Confidence Regularized Self-Training

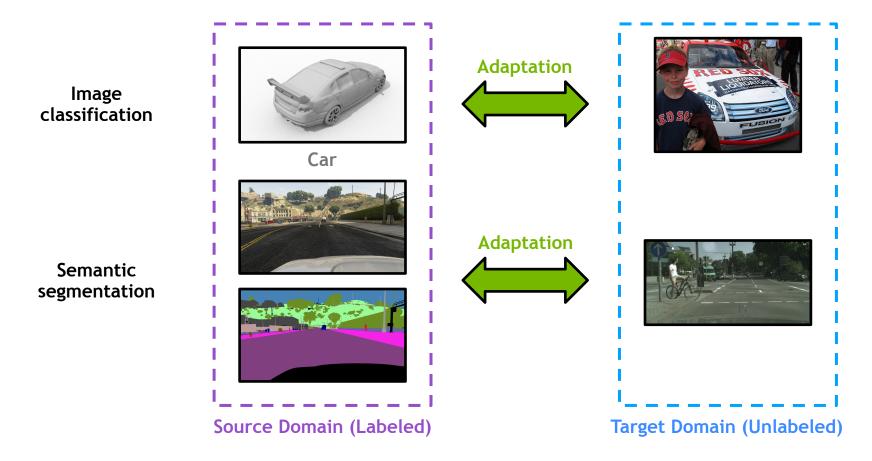
Yang Zou

Zhiding Yu

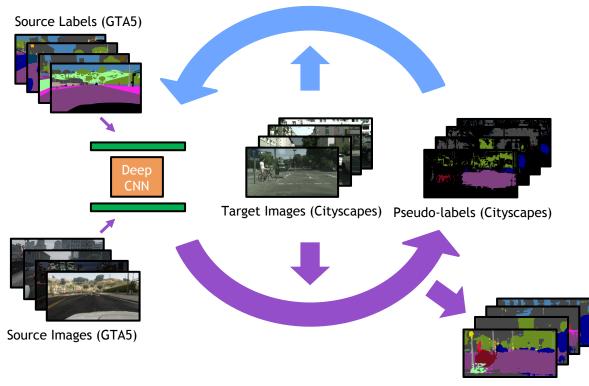
Xiaofeng Liu

Vijayakumar Bhagavatula

Jinsong Wang

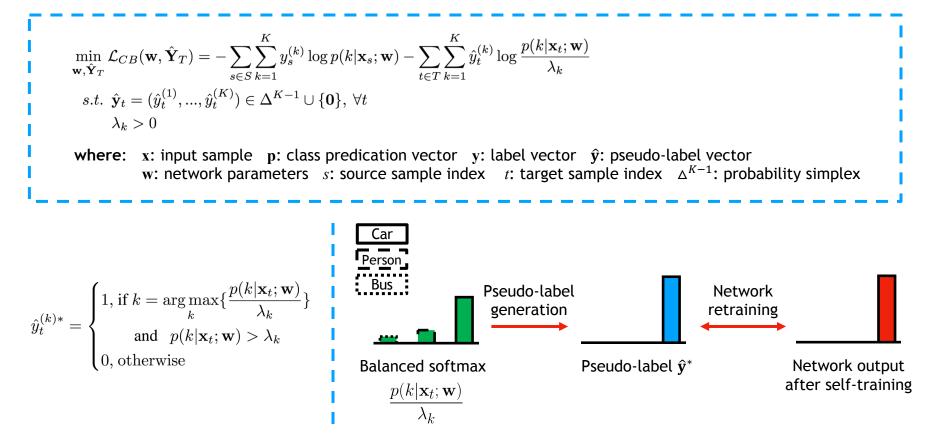

777777

Carnegie Mellon University 📀 🗤 IDIA

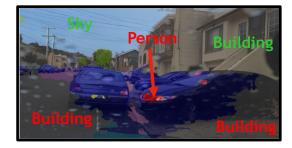


Unsupervised Domain Adaptation (UDA)

UDA through Iterative Deep Self-Training


 $\textbf{GTA5} \rightarrow \textbf{Cityscapes}$

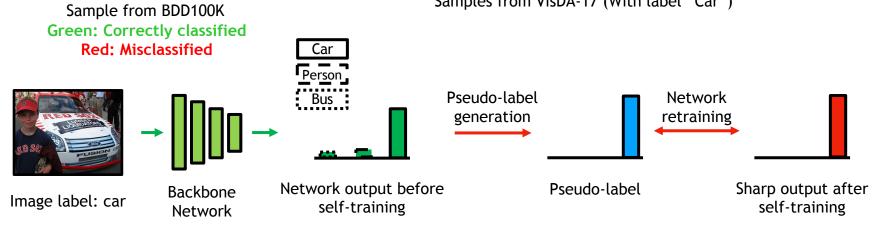
Predictions (Cityscapes)

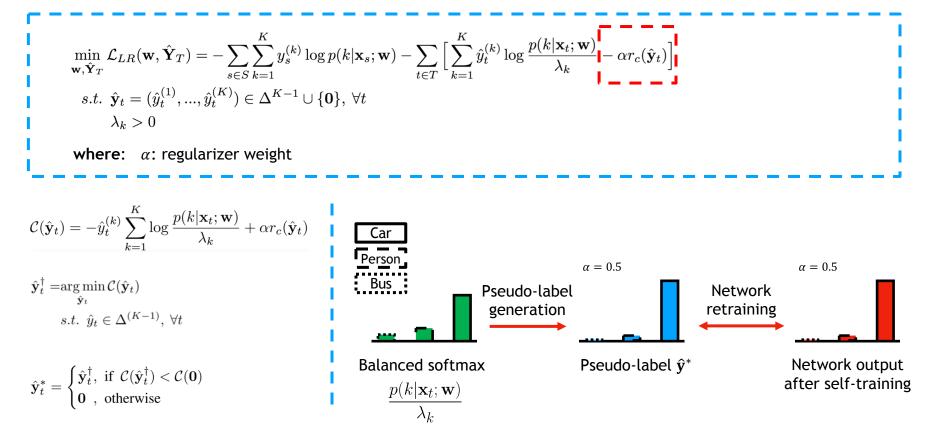

Yang Zou, Zhiding Yu et al., Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training, ECCV18

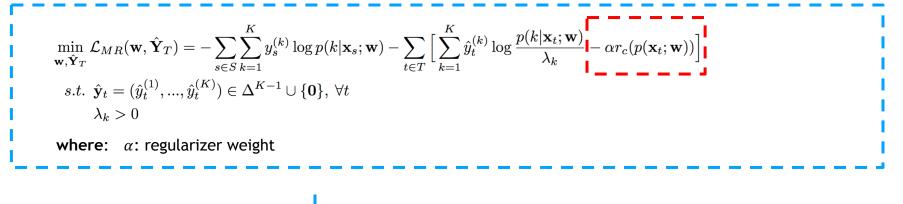
Class-Balanced Self-Training (CBST)

Yang Zou, Zhiding Yu et al., Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training, ECCV18

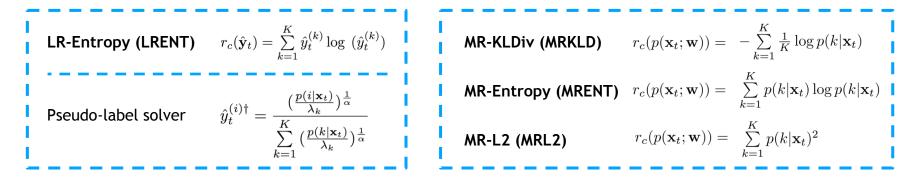
Issues in Self-Training: Overconfident Mistakes

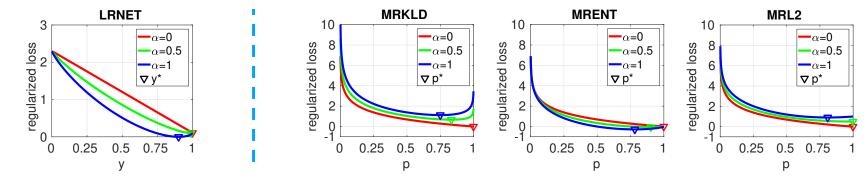





Samples from VisDA-17 (With label "Car")


Label Regularized Self-Training (LR)


Model Regularized Self-Training (MR)



$$\min_{\mathbf{w}} - \sum_{t \in T} \left[\sum_{k=1}^{K} \hat{y}_{t}^{(k)} \log p(k | \mathbf{x}_{t}; \mathbf{w}) - \alpha r_{c}(p(\mathbf{x}_{t}; \mathbf{w}))\right]$$

Proposed Confidence Regularizers

Pseudo-label generation loss v.s. probability Regularized retraining loss v.s. probability

Theoretical Analysis

Probabilistic Explanation

Proposition 1. CRST can be modeled as a regularized maximum likelihood for classification (RCML) problem optimized via classification expectation maximization.

Convergence Analysis

Proposition 2. Given pre-determined λ_k 's, CRST is convergent with gradient descent for network retraining optimization.

Experiment: UDA for Image Classification

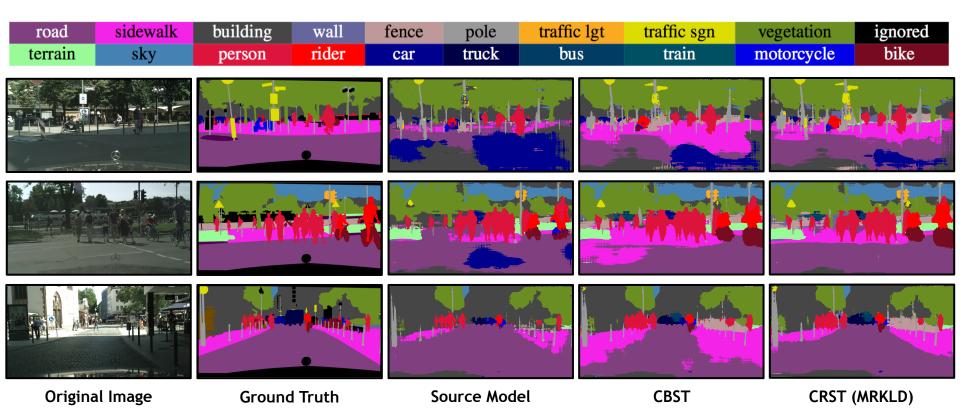
Results on VisDA-17

Method	Aero	Bike	Bus	Car	Horse	Knife	Motor	Person	Plant	Skateboard	Train	Truck	Mean
Source [50]	55.1	53.3	61.9	59.1	80.6	17.9	79.7	31.2	81.0	26.5	73.5	8.5	52.4
MMD [33]	87.1	63.0	76.5	42.0	90.3	42.9	85.9	53.1	49.7	36.3	85.8	20.7	61.1
DANN [15]	81.9	77.7	82.8	44.3	81.2	29.5	65.1	28.6	51.9	54.6	82.8	7.8	57.4
ENT [18]	80.3	75.5	75.8	48.3	77.9	27.3	69.7	40.2	46.5	46.6	79.3	16.0	57.0
MCD [51]	87.0	60.9	83.7	64.0	88.9	79.6	84.7	76.9	88.6	40.3	83.0	25.8	71.9
ADR [50]	87.8	79.5	83.7	65.3	92.3	61.8	88.9	73.2	87.8	60.0	85.5	32.3	74.8
SimNet-Res152 [44]	94.3	82.3	73.5	47.2	87.9	49.2	75.1	79.7	85.3	68.5	81.1	50.3	72.9
GTA-Res152 [53]	-	-	-	-	-	-	-	-	-	-	-	-	77.1
Source-Res101	68.7	36.7	61.3	70.4	67.9	5.9	82.6	25.5	75.6	29.4	83.8	10.9	51.6
CBST	87.2±2.4	$78.8 {\pm} 1.0$	56.5 ± 2.2	55.4 ± 3.6	85.1 ± 1.4	$79.2{\pm}10.3$	$83.8{\pm}0.4$	77.7 ± 4.0	$82.8{\pm}2.8$	88.8 ± 3.2	69.0 ± 2.9	$72.0{\pm}3.8$	76.4±0.9
MRL2	87.0±2.9	79.5 ± 1.9	57.1 ± 3.2	54.7 ± 2.9	85.5 ± 1.1	78.1 ± 11.7	$83.0 {\pm} 1.5$	77.7 ± 3.7	82.4 ± 1.7	$88.6 {\pm} 2.7$	69.1±2.2	71.8 ± 3.0	76.2±1.0
MRENT	87.1±2.7	$78.3 {\pm} 0.7$	56.1±4.0	$54.4{\pm}2.7$	$84.4{\pm}2.3$	79.9 ± 10.6	$83.7 {\pm} 1.1$	77.9 ± 4.4	82.7±2.4	$87.4{\pm}2.8$	$70.0{\pm}1.4$	72.8 ± 3.3	76.2±0.8
MRKLD	87.3±2.5	79.4±1.9	60.5 ± 2.4	59.7 ± 2.5	87.6±1.4	82.4±4.4	86.5 ± 1.1	$78.4{\pm}2.6$	84.6 ± 1.7	$86.4{\pm}2.8$	72.5 ± 2.4	$69.8 {\pm} 2.5$	77.9±0.5
LRENT	87.7±2.4	$78.7{\pm}0.8$	57.3 ± 3.3	54.5 ± 4.0	$84.8{\pm}1.7$	79.7 ± 10.3	$84.2{\pm}1.4$	77.4 ± 3.7	83.1±1.5	88.3±2.6	$70.9{\pm}2.1$	72.6±2.4	76.6±0.9
MRKLD+LRENT	$88.0{\pm}0.6$	79.2 ± 2.2	61.0 ± 3.1	$60.0 {\pm} 1.0$	87.5 ± 1.2	$81.4{\pm}5.6$	86.3 ± 1.5	$78.8 {\pm} 2.1$	$85.6 {\pm} 0.9$	$86.6 {\pm} 2.5$	73.9 ± 1.3	$68.8 {\pm} 2.3$	78.1±0.2

Results on Office-31

Method	A→W	$D { ightarrow} W$	$W \rightarrow D$	$A \rightarrow D$	$D \rightarrow A$	W→A	Mean
ResNet-50 [21]	$68.4{\pm}0.2$	96.7±0.1	99.3±0.1	68.9 ± 0.2	62.5 ± 0.3	60.7 ± 0.3	76.1
DAN [33]	80.5±0.4	$97.1 {\pm} 0.2$	$99.6 {\pm} 0.1$	$78.6{\pm}0.2$	$63.6 {\pm} 0.3$	$62.8{\pm}0.2$	80.4
RTN [35]	84.5±0.2	$96.8 {\pm} 0.1$	$99.4{\pm}0.1$	$77.5 {\pm} 0.3$	$66.2 {\pm} 0.2$	$64.8 {\pm} 0.3$	81.6
DANN [15]	82.0±0.4	$96.9{\pm}0.2$	$99.1 {\pm} 0.1$	$79.7 {\pm} 0.4$	$68.2{\pm}0.4$	$67.4{\pm}0.5$	82.2
ADDA [61]	$86.2{\pm}0.5$	$96.2{\pm}0.3$	$98.4{\pm}0.3$	$77.8{\pm}0.3$	$69.5 {\pm} 0.4$	$68.9{\pm}0.5$	82.9
JAN [36]	85.4±0.3	$97.4{\pm}0.2$	$99.8 {\pm} 0.2$	$84.7 {\pm} 0.3$	$68.6 {\pm} 0.3$	$70.0{\pm}0.4$	84.3
GTA [53]	89.5±0.5	$97.9 {\pm} 0.3$	$99.8 {\pm} 0.4$	$87.7 {\pm} 0.5$	$72.8{\pm}0.3$	$71.4{\pm}0.4$	86.5
CBST	$87.8 {\pm} 0.8$	$98.5 {\pm} 0.1$	$100{\pm}0.0$	86.5±1.0	71.2 ± 0.4	$70.9 {\pm} 0.7$	85.8
MRL2	$88.4{\pm}0.2$	$98.6 {\pm} 0.1$	$100{\pm}0.0$	$87.7{\pm}0.9$	$71.8{\pm}0.2$	72.1±0.2	86.4
MRENT	88.0±0.4	$98.6 {\pm} 0.1$	$100{\pm}0.0$	$87.4{\pm}0.8$	$72.7{\pm}0.2$	$71.0{\pm}0.4$	86.4
MRKLD	$88.4{\pm}0.9$	$98.7{\pm}0.1$	$100{\pm}0.0$	$88.0{\pm}0.9$	$71.7 {\pm} 0.8$	$70.9 {\pm} 0.4$	86.3
LRENT	88.6 ± 0.4	$98.7{\pm}0.1$	$100{\pm}0.0$	89.0±0.8	$72.0{\pm}0.6$	$71.0{\pm}0.3$	86.6
MRKLD+LRENT	89.4±0.7	98.9±0.4	$100{\pm}0.0$	$88.7{\pm}0.8$	72.6 ± 0.7	$70.9 {\pm} 0.5$	86.8

Experiment: UDA for Semantic Segmentation


Results on SYNTHIA -> Cityscapes (mIoU* - 13 class)

											-								
Method	Backbone	Road	SW	Build	Wall*	Fence*	Pole*	TL	TS	Veg.	Sky	PR	Rider	Car	Bus	Motor	Bike	mIoU	mIoU*
Source	DRN-105	14.9	11.4	58.7	1.9	0.0	24.1	1.2	6.0	68.8	76.0	54.3	7.1	34.2	15.0	0.8	0.0	23.4	26.8
MCD [51]	DRIN-105	84.8	43.6	79.0	3.9	0.2	29.1	7.2	5.5	83.8	83.1	51.0	11.7	79.9	27.2	6.2	0.0	37.3	43.5
Source	DeepLabv2	55.6	23.8	74.6	-	_	_	6.1	12.1	74.8	79.0	55.3	19.1	39.6	23.3	13.7	25.0	-	38.6
AdaptSegNet [60]	DeepLabv2	84.3	42.7	77.5	_	_	_	4.7	7.0	77.9	82.5	54.3	21.0	72.3	32.2	18.9	32.3	-	46.7
AdvEnt [63]	DeepLabv2	85.6	42.2	79.7	8.7	0.4	25.9	5.4	8.1	80.4	84.1	57.9	23.8	73.3	36.4	14.2	33.0	41.2	48.0
Source	ResNet-38	32.6	21.5	46.5	4.8	0.1	26.5	14.8	13.1	70.8	60.3	56.6	3.5	74.1	20.4	8.9	13.1	29.2	33.6
CBST [69]	Resinet-38	53.6	23.7	75.0	12.5	0.3	36.4	23.5	26.3	84.8	74.7	67.2	17.5	84.5	28.4	15.2	55.8	42.5	48.4
Source		64.3	21.3	73.1	2.4	1.1	31.4	7.0	27.7	63.1	67.6	42.2	19.9	73.1	15.3	10.5	38.9	34.9	40.3
CBST		68.0	29.9	76.3	10.8	1.4	33.9	22.8	29.5	77.6	78.3	60.6	28.3	81.6	23.5	18.8	39.8	42.6	48.9
MRL2	DeepLeby?	63.4	27.1	76.4	14.2	1.4	35.2	23.6	29.4	78.5	77.8	61.4	29.5	82.2	22.8	18.9	42.3	42.8	48.7
MRENT	DeepLabv2	69.6	32.6	75.8	12.2	1.8	35.3	23.3	29.5	77.7	78.9	60.0	28.5	81.5	25.9	19.6	41.8	43.4	49.6
MRKLD		67.7	32.2	73.9	10.7	1.6	37.4	22.2	31.2	80.8	80.5	60.8	29.1	82.8	25.0	19.4	45.3	43.8	50.1
LRENT		65.6	30.3	74.6	13.8	1.5	35.8	23.1	29.1	77.0	77.5	60.1	28.5	82.2	22.6	20.1	41.9	42.7	48.7

Results on GTA5 -> Cityscapes

Method	Backbone	Deed	SW	Build	Wall	Fence	Pole	TL	TS	Vee	Tanala	C1	DD	Didan	Car	Truck	Bus	Train	Motor	Bike	mIoU
	DackDone	Road								Veg.	Terrain	Sky	PR	Rider							
Source	DRN-26	42.7	26.3	51.7	5.5	6.8	13.8	23.6	6.9	75.5	11.5	36.8	49.3	0.9	46.7	3.4	5.0	0.0	5.0	1.4	21.7
CyCADA [23]		79.1	33.1	77.9	23.4	17.3	32.1	33.3	31.8	81.5	26.7	69.0	62.8	14.7	74.5	20.9	25.6	6.9	18.8	20.4	39.5
Source	DRN-105	36.4	14.2	67.4	16.4	12.0	20.1	8.7	0.7	69.8	13.3	56.9	37.0	0.4	53.6	10.6	3.2	0.2	0.9	0.0	22.2
MCD [51]	DRN-105	90.3	31.0	78.5	19.7	17.3	28.6	30.9	16.1	83.7	30.0	69.1	58.5	19.6	81.5	23.8	30.0	5.7	25.7	14.3	39.7
Source	D. L.L.A.	75.8	16.8	77.2	12.5	21.0	25.5	30.1	20.1	81.3	24.6	70.3	53.8	26.4	49.9	17.2	25.9	6.5	25.3	36.0	36.6
AdaptSegNet [60]	DeepLabv2	86.5	36.0	79.9	23.4	23.3	23.9	35.2	14.8	83.4	33.3	75.6	58.5	27.6	73.7	32.5	35.4	3.9	30.1	28.1	42.4
AdvEnt [63]	DeepLabv2	89.4	33.1	81.0	26.6	26.8	27.2	33.5	24.7	83.9	36.7	78.8	58.7	30.5	84.8	38.5	44.5	1.7	31.6	32.4	45.5
Source	Dutio	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	29.2
FCAN [67]	DeepLabv2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	46.6
Source		71.3	19.2	69.1	18.4	10.0	35.7	27.3	6.8	79.6	24.8	72.1	57.6	19.5	55.5	15.5	15.1	11.7	21.1	12.0	33.8
CBST		91.8	53.5	80.5	32.7	21.0	34.0	28.9	20.4	83.9	34.2	80.9	53.1	24.0	82.7	30.3	35.9	16.0	25.9	42.8	45.9
MRL2		91.9	55.2	80.9	32.1	21.5	36.7	30.0	19.0	84.8	34.9	80.1	56.1	23.8	83.9	28.0	29.4	20.5	24.0	40.3	46.0
MRENT	DeepLabv2	91.8	53.4	80.6	32.6	20.8	34.3	29.7	21.0	84.0	34.1	80.6	53.9	24.6	82.8	30.8	34.9	16.6	26.4	42.6	46.1
MRKLD		91.0	55.4	80.0	33.7	21.4	37.3	32.9	24.5	85.0	34.1	80.8	57.7	24.6	84.1	27.8	30.1	26.9	26.0	42.3	47.1
LRENT		91.8	53.5	80.5	32.7	21.0	34.0	29.0	20.3	83.9	34.2	80.9	53.1	23.9	82.7	30.2	35.6	16.3	25.9	42.8	45.9
Source		70.0	23.7	67.8	15.4	18.1	40.2	41.9	25.3	78.8	11.7	31.4	62.9	29.8	60.1	21.5	26.8	7.7	28.1	12.0	35.4
CBST [69]		86.8	46.7	76.9	26.3	24.8	42.0	46.0	38.6	80.7	15.7	48.0	57.3	27.9	78.2	24.5	49.6	17.7	25.5	45.1	45.2
MRL2		84.4	52.7	74.7	38.0	32.2	43.7	53.7	38.6	73.9	24.4	64.4	45.6	24.6	63.2	3.22	31.9	45.9	44.2	34.8	46.0
MRENT	ResNet-38	84.6	49.5	73.9	35.8	25.1	46.2	53.3	43.3	75.2	24.2	63.8	48.2	33.8	65.7	2.89	32.6	39.2	50.0	34.7	46.4
MRKLD		84.5	47.7	74.1	27.9	22.1	43.8	46.5	37.8	83.7	22.7	56.1	56.8	26.8	81.7	22.5	46.2	27.5	32.3	47.9	46.8
LRENT		80.3	40.8	65.8	24.6	30.5	43.1	49.5	40.3	82.1	26.0	54.6	59.4	32.1	68.0	31.9	30.0	21.9	44.8	46.7	45.9
CBST-SP		85.6	55.1	76.9	26.8	23.4	38.9	47.1	46.9	83.4	25.5	68.7	45.6	15.7	79.7	27.7	50.3	38.2	33.4	44.6	48.1
MRKLD-SP	ResNet-38	90.8	46.0	79.9	20.8	23.4	42.3	46.2	40.9	83.5	19.2	59.1	63.5	30.8	83.5	36.8	50.5 52.0	28.0	36.8	46.4	49.2
	Resivel-30											0.7.14									
MRKLD-SP-MST		91.7	45.1	80.9	29.0	23.4	43.8	47.1	40.9	84.0	20.0	60.6	64.0	31.9	85.8	39.5	48.7	25.0	38.0	47.0	49.8

Experiment: Qualitative Results (GTA5 -> Cityscapes)

Conclusions and Future Works

Conclusions

- Compared with supervised learning, self-training is an under-determined problem (EM with latent variables).
- Our work shows the importance of confidence regularizations as inductive biases to help under-constrained problems such as unsupervised domain adaptation and semi-supervised learning.
- CRST is still aligned with entropy minimization. The proposed confidence regularization only serves as a safety measure to prevent over self-training/entropy minimization.
- MR-KLD is most recommended in practice for its efficiency and good performance.

Future Works

• This work could potentially inspire many other meaningful regularizations/inductive biases for similar problems.