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where:   x: input sample   p: class predication vector   y: label vector   !": pseudo-label vector

w: network parameters   s: source sample index    t: target sample index   △$%&: probability simplex
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Proposed Confidence Regularizers

0 0.25 0.5 0.75 1
y

0

1

2

3

re
g
u
la

ri
ze

d
 lo

ss

LRNET

=0
=0.5
=1

y*

0 0.25 0.5 0.75 1
p

-1
0

2

4

6

8

10

re
g
u
la

ri
ze

d
 lo

ss

MRENT

=0
=0.5
=1

p*

0 0.25 0.5 0.75 1
p

-1
0

2

4

6

8

10

re
g
u
la

ri
ze

d
 lo

ss

MRKLD

=0
=0.5
=1

p*

0 0.25 0.5 0.75 1
p

-1
0

2

4

6

8

10

re
g
u
la

ri
ze

d
 lo

ss

MRL2

=0
=0.5
=1

p*



Probabilistic Explanation

Proposition 1. CRST can be modeled as a regularized maximum likelihood for classification (RCML) problem 

optimized via classification expectation maximization.

Convergence Analysis

Proposition 2. Given pre-determined !"′s, CRST is convergent with gradient descent for network retraining 

optimization.

Theoretical Analysis



Results on VisDA-17

Results on Office-31

Experiment: UDA for Image Classification



Results on SYNTHIA -> Cityscapes (mIoU* - 13 class)

Results on GTA5 -> Cityscapes

Experiment: UDA for Semantic Segmentation
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Experiment: Qualitative Results (GTA5 -> Cityscapes)



Conclusions

§ Compared with supervised learning, self-training is an under-determined problem (EM with latent variables).

§ Our work shows the importance of confidence regularizations as inductive biases to help under-constrained 

problems such as unsupervised domain adaptation and semi-supervised learning.

§ CRST is still aligned with entropy minimization. The proposed confidence regularization only serves as a safety 

measure to prevent over self-training/entropy minimization.

§ MR-KLD is most recommended in practice for its efficiency and good performance.

Future Works

§ This work could potentially inspire many other meaningful regularizations/inductive biases for similar problems.

Conclusions and Future Works


